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Cotton effects arise when the electronic motions of a transition are such that parallel components of elec- 
tric and magnetic moments are generated. With molecules possessing centers or planes of symmetry, 
strict group theoretical rules show that this cannot happen. Over the years, three different types of asym- 
metric interactions have been proposed to account for the generation of Cotton effects. The three mecha- 
nisms supplement one another and are not to be regarded as alternatives. The basis for the symmetry 
rules for the one-electron mechanism are now well understood. The other mechanisms are the coupling 
of electric transition moments on different groups (Kirkwood-Kuhn) and the coupling of a magnetic 
moment on one group with the electric moment of another. In  this paper all three mechanisms are 
developed for a basic model system. It is shown that the signs of Cotton effects may be easily correlated 
with molecular conformation when the transition moment geometry is such that negative and positive 
energy situations are discernible by inspection. Basic equations are presented for each mechanism. 

The importance of optical rotation as a tool in struc- 
tural chemistry lies in its extraordinary sensitivity to 
molecular geometry. Most spectral properties of a 
molecule depend in a more or less additive fashion on 
the chemical groups of which it is constituted. The 
relative geometries of the constituent groups alter such 
properties as a secondary effect of greater or less 
sensitivity, depending on the method. (At opposite 
ends of the sensitivity scale are high-resolution nuclear 
magnetic resonance spectroscopy and molar refrac- 
tivity.) Optical rotation, on the other hand, is in- 
extricably bound to the interactions among the groups 
and, therefore, to molecular geometry. Apart from 
rare molecules which have intrinsically asymmetric 
chromophores, optical rotation has no primary source 
within the groups themselves but springs directly from 
their relative orientations. 

When optical rotation or circular dichroism is mea- 
sured in the neighborhood of an absorption band, char- 
acteristic curves of the kind shown in Figure 1 are ob- 
served. This absorption-dispersion behavior is called 
a Cotton effect. The two kinds of curves are related 
by a well-established mathematical transformation, so 
that in any theoretical discussion it suffices to discuss 
one of them. We shall consider circular dichroism, 
since it has the simplifying property of vanishing except 
within an optically active absorption band. This will 
also automatically restrict our discussion to the optical 
activity generated by a single absorption band, rather 
than the cumulated contributions of all bands which is 
required for the understanding of rotatory dispersion 
in transparent regions. Circular dichroism will be 
defined as A E  = € 1  - er, where € 1  and er are the molecular 
extinction coefficients for left and right circularly po- 
larized light, respectively. Conversion to the alter- 
native measure of circular dichroism in terms of 
molecular ellipticity is easily achieved by means of the 
formula [Me] = 2.303(4500/1r)Aa.2 

(1) This research was supported by the Kational Science Founda- 
tion and the National Institutes of Health (Cancer Institute CA- 
4216). 

The integrated intensity of an electronic absorption 
band may be shown to be directly proportional to the 
square of the electric dipole moment p for the tran- 
sition. This is a quantity which plays the same role in 
quantum theory as the oscillating electric dipole in the 
classical theory of the absorption and emission of radi- 
ation. One principal difference is that the magnitude 
of the classical dipole depends on the strength of the 
field which induces it, whereas in quantum mechanics 
it is a fixed molecular quantity which depends on the 
wave functions of the ground and the excited states. 
The magnitude of the transition dipole (apart from an 
internal field correction) may be determined experi- 
mentally by the formula 

where h, c, N ,  and E are, respectively, Planck's constant, 
the velocity of light, Avogadro's number, and the 
molecular extinction coefficient. If reasonably ac- 
curate wave functions are available, D may be calcu- 
lated by way of the defining relation p = j$'excited' 

p$'ground dr .  The transition moment is a vector and 
has fixed orientation within a molecular group. This 
is easily seen in measurements of the absorption prop- 
erties of oriented specimens where the extinction co- 
efficient depends on the direction of polarization of 
light, E = 3e0 cos2 0, where eo is the ordinary extinction 
coefficient of an unoriented sample and e is the angle 
between p and the electric vector of the polarized beam 
of light. In  optical rotation theory the directions and 
magnitudes of the transition moments are assumed to 
be known from experiment or calculation. The square 
of the transition moment is called the dipole strength, 
D, of the transition. 

Just as the observed absorption of a molecule may be 
said to arise from its dipole strength, circular dichroism 
arises from an analogous quantity, the rotatory strength, 

(2) A. Moscowita in "Optical Rotatory Dispersion," C. Djerassi, 
Ed., McGraw-Hill Book Co., Inc., 1960. 
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Figure 1. Circular dichroism-optical rotation curves for a 
Gaussian absorption band. Rotatory strength = 0.1 Debye 
magnetons (DM), band width = 15 mp, Xmsl = 250 mp. 

R, which is obtainable from the area of a circular di- 
chroic band 

1 (2.303)3hc bedh 
4 8n3Nh,, 

R E -  

Quantum mechanics shows that R = Im[M.y]. The 
symbol Im means the “imagninary part of,” y is the 
electric transition moment as before, and M is the 
magnetic dipole moment of the transition. A con- 
venient unit for R is the Debye magneton (DM), which 
equals 0.92732 X cgs unit. For molecules, in the 
absence of external fields, the electric moments may be 
taken as real vectors and the magnetic vectors as pure 
imaginaries. The physical significance of this differ- 
ence is that they are out of phase with one another. 
Consequently, the rotatory strength is a pure imagin- 
ary, and its value is obtained by dropping the i in the 
resulting formulas. This is done in all subsequent 
formulas. The amplitude of the circular dichroic band 
thus depends on the magnitude of the electric and 
magnetic transition moments and on the cosine of the 
angle between them. 

It should be noted that optical rotatory methods 
detect only the relative orientations of transition 
moments in its constituent groups, not the positions 
and orientations of atoms and bonds. Conversion of 
one kind of information into the other requires a 
knowledge of the orientations of the transition mo- 
ments within the groups and the manner in which they 
are combined to give net molecular moments. 

The Origin of Magnetic Transition Moments 

pletely ignored in electronic spectroscopy. 
Magnetic transition moments can usually be com- 

The es- 

sential purpose of molecular theories of rotatory power 
is to  demonstrate how these moments arise in optically 
active transitions and how they are coupled to electric 
transition moments to given nonvanishing rotatory 
strengths. The magnetic moment operator is given by 

r X ev e 
2mc 

M = __ (r x p> = - 2c (3) 

where the first form shows its proportionality to an- 
gular momentum and the second to the current den- 
sity ev; m is the mass of the electron, e is its charge, r 
is distance from a selected origin, p is the momentum 
operator, and v, the velocity operator (=p/m). If the 
quantity ev is replaced by its macroscopic equivalent 
I d s  (where I is the current carried by a small element 
.of conductor ds), the classical formula for the magnetic 
moment of a current element is obtained. Thus, the 
quantum mechanical origins of electronic magnetic 
momentsa are identical with those in classical mechan- 
ics: the net circulation of current about a point of 
space. 

The magnetic transition moment is to be found by 
integrating between the wave functions of the states 
linked by the transition ut = J#exoitedM#ground dT. 
Note that changing the order of the wave functions in 
this integral changes the sign of the transition moment 
because of the skew symmetric character of Mi. For 
many transitions i t  is possible to find an origin such 
that the magnetic transition moment vanishes. This 
is because most molecular transitions may be regarded 
as linear charge displacements which give electric mo- 
ments but no magnetic moments if the origin is prop- 
erly selected in the group. There are other cases, 
however, where the transition represents an intrinsic 
rotation of charge density. Examples are the p-p and 
d-d transitions in atoms and the n-r* transitions of 
molecules. Here we have an intrinsic magnetic transi- 
tion moment of the order of a Bohr magneton. To dis- 
tinguish the two cases we put r = R + e, where r is 
the position vector of the electrons, R is a fixed vector 
from an arbitrarily selected origin to the optical center 
of the group under consideration, and e defines the 
position of electrons relative to the local center. The 
magnetic moment is then 

R X e v  e X e v  R X e v  
2c 2c 2c M = -  +--- - + m (4) 

where m is the local (intrinsic) magnetic moment opera- 
tor. To simplify the discussion we assume that the 
transition is either purely electric (has a large linear 
transition velocity, vt) or intrinsically magnetic (has a 
large mt), but not both. As a consequence, we either 
have 

Mt = mt ( 5 4  

(3) We are excluding electron spin from the present discussion. 
Magnetic moments resulting from jumps in electron spin do not 
usually make significant contributions to ordinary optical activity, 
though they must be considered in discussion of magnetic rotation. 
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or 

R X evt Mt = ___ 
2c 

If there is but one group that need be considered, the 
origin may be placed in the center of the group and 
there is no magnetic moment from the latter formula 
(R = 0). This is the case considered in treating ab- 
sorption spectra. If there are two groups coupled to 
one another, their combination possesses a magnetic 
moment even though the charge displacements are 
locally linear within their groups. It has been shown 
many times that the combination of two terms of the 
kind in (5b) causes the position of the arbitrary origin 
to drop out so that the distance that matters in the 
final formula is Rzl = Rz - RI, Le., the separation of 
the two coupled groups (see Table I). 

Condon, Altar, and Eyring were the first to appreci- 
ate the contributions of intrinsic magnetic moments to 
optical rotation in their one-electron theory. Kuhn 
and Kirkwood demonstrated the production of mag- 
netic moments by linear electric transitions for the 
classical and quantal cases, respectively. 

We can change eq 5 into a more familiar form by using 
the quantum mechanical formula for the velocity evt = 
iwtpt, where ut is the circular Bohr frequency, 
(27r/h)(Eex - E,) .4  The magnetic moment is thus ex- 
pressible in terms of the electric transition moment from 
which it originates (eq 5’). As stated above, the po- 

sition of the origin cancels out in the calculation of 
optical rotation, leading to the intuitively satisfactory 
result that only the relative positions of the groups 
affect the optical properties. 

Symmetry Rules 
There is no established language, so we will define a 

symmetry rule for the purposes of this paper as a simple 
geometrical construct which provides predictions of the 
sign and order of magnitude of a Cotton effect from 
molecular conformation and, hopefully, molecular 
conformation from the signs and orders of magnitudes 
of Cotton effects. The octant rule for ketones and the 
quadrant rule for the peptide link are two examples of 
regional symmetry rules. They permit one to assay 
the contribution of a perturbing group to  the Cotton 
effect of a chromophore as being positive, negative, or 
vanishing, depending on whether or not the group lies 
in certain regions defined by the symmetry of the 
chromophore. To incorporate many cases of interest, 
we will have to generalize to the more complex case 
where not only the position but also the orientation 
of the second group is specified. Symmetry rules can 
only be effective for idealized cases. As a consequence, 
it is pointless to utilize complex models for their deriva- 

(4) Note that this formula is also classical. For a classical har- 
monic oscillator the displacement is given by z = xoetwt; therefore, 
en = e d x / d t  = iwex = i w r .  

tion. For this purpose we will select as a model for 
optical activity a molecule which has only two groups 
and only two electronic transitions. Even so, we will 
be led to three different mechanisms and three sets of 
symmetry rules. To apply the results to real molecules, 
one must assume either that other groups and transi- 
tions are unimportant or that their effects are additive. 
If this is not true, symmetry rules are of little value, 
and the origins of Cotton effects can be comprehended 
only on the basis of quantitative calculations. De- 
spite their limitations, symmetry rules have great 
heuristic value and have provided the solution to many 
practical structural problems. 

Three Mechanisms of Molecular Rotatory Power 
With the restrictions outlined above that the model 

has only two electronically excited states, it is easily 
seen that there are only three ways in which rotatory 
strength can be developed by two groups. (1) Both 
transitions are in the same chromophore. One is mag- 
netic and the other electric. The rest of the molecule 
acts as a perturbing field which partially breaks down 
the symmetry of the chromophore and “mixes” the 
two transitions. This is the one-electron or Condon, 
Altar, and Eyring theory. (2) Both groups have a 
single electric transition. Because of their proximity, 
these are coupled by their dipolar fields to produce a 
magnetic moment as discussed above. This is the 
Kuhn-Kirkwood mechanism. When the two groups 
are identical, the excited states are degenerate and the 
two groups participate equally in the resulting coupled 
transitions. This is the exciton modification of Moffitt. 
( 3 )  One group has an electric transition and the other 
a magnetic transition. These are coupled in the 
molecule to give rotatory strength to both transitions. 
This type of interaction has long been recognized as a 
possibility but has been ignored by most workers in the 
field. It was considered by Woody and Tinoco5 in 
their discussion of the optical rotation of peptide heli- 
ces; it has been used in my own laboratory for several 
years, where it is indispensable in understanding the 
rotatory properties of certain cyclic peptides; it has re- 
cently been given a systematic discussion by Hohn 
and TVeigang.6 We shall call it the p-m mechanism. 

These possibilities are outlined in Table I, together 
with the formulas which give the rotatory strength for 
each case. The vector expressions in brackets, which 
depend directly on the relative geometries of the tran- 
sition moments, might be called the optical factors for 
the transition. The symbol V is the perturbation 
energy between the two excited states which produces 
coupling with mechanisms 1 and 3 and mixing with 
mechanism 2 .  Since the energies of the states are 
assumed to be known, the unknown factors in the de- 
termination of the sign of a given Cotton effect are the 
optical factor and the potential energy V .  The signs 
of the optical and energy factors are not independent of 
one another, however; reversal of the direction of a 

( 5 )  R. W. Woody and I. Tinoco, J .  Chem. Phvs., 46, 4927 (1967). 
(6) E. G. Hohn and 0. E. Weigang, ib id . ,  in press. 
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Table I 
Origins of Optical Activity for a Simple Model with Two Electronic Transitions 

Mechanism 
Group 1 

contributes 

Nondegenerate P1 

Degenerate (Moffitt) Pl 
Dipole-dipole coupling 

One electron PP 

ma 

transition moment changes the sign of both the optical 
factor and V .  It is thus possible to set the optical 
factor arbitrarily as positive (by selecting the appropri- 
ate phase for the two transition moments) and there- 
after derive all qualitative symmetry rules from the 
form of the potential energy of interaction of the two 
groups. This will be done separately for the three 
mechanisms. 

The One-Electron Mechanism. With this mecha- 
nism the optical factor has no geometry dependence a t  
all, since the relative orientations of the two transition 
moments are entirely determined by the electronic 
structure of the single chromophoric group. It can be 
shown that the form of V which is required to induce 
optical rotation of the chromophore depends on the 
symmetry of the chromophoric group itself, and a 
general method for determining the appropriate poten- 
tial function for different symmetries has been de- 
scribed.’ The results of the analysis may be para- 
phrased in a very simple manner: use the natural planes 
of symmetry of the chromophore to divide all of space 
into regions bounded by these planes. The contri- 
bution to R of a perturbing group changes sign when it 
passes from one region to another. Once the sign of 
one region is established (by experiment or detailed 
calculation), all the others follow. The importance of 
this mechanism lies in the fact that the lowest energy 
absorption bands of many molecules containing hetero 
atoms are essentially p-p transitions with large mag- 
netic moments (n-a* transitions). The d-d transitions 
of the transition metals also fall in this category. We 
shall illustrate the method for the n--9* transitions of 
the peptide and ketone groups. 

For the peptide group there is only one plane of 
symmetry, and the above considerations indicate a 
“planar rule.” The rotatory strength changes sign 
when a given perturbant is switched from one side of 
the peptide plane to the other. We now come to a 
minor complication which arises frequently, namely, 
that the electronic orbitals involved in the transition 
may effectively have a higher symmetry than the group 
itself. This is the case of the n-a* transition of the 
peptide unit. The n orbital of the CO group has a 
nodal surface perpendicular to the plane of the peptide 
group. This surface is planar in symmetrical ketones 
but somewhat distorted in peptides. Calculations and 

(7) J. A. Schellman, J. Chem. Phys., 44, 66 (1966). 

Group 2 
contributes 

Pa 

Rotary strength 

Static environment Ra = - -‘a’ [pa*ma~  - €a 

PZ 

experiment show that this surface plays the same role 
as a true symmetry plane, so that the resultant rule is 
a quadrant rule (Figure 2a). 

With the carbonyl group there are two natural planes 
of symmetry, perpendicular to one another and inter- 
secting on the C-0 axis (Figure 2b). This leads to  a 
quadrant rule. The a*  orbital has, however, a nodal 
surface orthogonal to both of these which comes be- 
tween the C and 0 atoms. Inclusion of this surface 
is the origin of the octant rule which has been used so 

V b  
Figure 2. (a) Quadrant rule for the peptide group. The ver- 
tical surface is not planar because of the horizontal distortion of 
the nonbonding electrons of the C-0 group. (b) Octant rule for 
ketones. The surface separating the C from the 0 atom is not 
planar because of the unsymmetrical distribution of the r 
electrons on the C and 0 atoms. No attempt is made to depict 
the deviations from planarity, since these are very sensitive to 
the wave functions assumed. 
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extensively. The author recently posed the question 
of the relative dominance of the quadrant rule and oc- 
tant rule contributions, which to a certain extent de- 
pend on the selection of wave functions (basis set). 
Bouman and Moscowitzs have recently investigated this 
point and found not only that the octant set gives larger 
contributions, but also that the quadrant contributions 
are strongly suppressed by the assumption of delocal- 
ized n orbitals. Accordingly, they reassert the octant 
rule BS the basic symmetry rule for ketones. 

It is usually assumed that regional rules of these 
kinds furnish the basis for the complete interpretation 
of the Cotton effects of transitions with large magnetic 
moments. This is not necessarily true. It can easily 
be shown that effectively the p-m mechanism can con- 
tribute as effectively as the one-electron mechanism. 
Both mechanisms should always be considered in any 
application to see which, if either, plays the dominant 
role. 

The Dipole-Coupling Mechanism. For all strong 
transitions ( E  >1000), dipole coupling plays a major 
part in the development of Cotton effects. To a first 
approximation the potential energy is given by the 
point-dipole formula 

(6) 
V = -  v 1 . v ~  - 3(v1-R)(vz.R) 

R3 R5 
where yl and v2 are the transition moments in groups 1 
and 2 and R is the distance between them (R = R2 - 
R1). We note that both the optical and the energy 
factors for this case depend only on the relative orien- 
tations of transition moments and not on the constitu- 
tion or symmetry of the groups. The resulting sym- 
metry rule is also independent of group structural fea- 
tures. 

A single transition moment is represented by a 
double-headed arrow which indicates its oscillatory 
nature. When two transition moments are coupled, 
their relative motions become important, and the com- 
bined system is best represented by pairs of single- 
headed arrows which indicate the relative phases of 
motion (Figure 3). The only possibilities for two tran- 
sition moments are “in phase” and “out of phase.” 
Which of the two is called “in phase” depends on the 
convention one sets up in drawing the arrows and does 
not affect the interpretation. It can be shown that 
the rotatory strengths developed by the two phases are 
equal in magnitude and opposite in sign. Hence, the 
only thing to be decided on with the simple model is the 
effect of geometry on the sign of the Cotton effect of the 
band of lowest energy. The clue for this assign- 
ment comes from the fact that negative coupling energy 
is always associated with the lowest energy band. One 
procedure is as follows: assign the transition moment 
arrows for the given conformation so that the optical 
factor (Rzlvvz X vl) is positive. This means that we 
are dealing with a positive Cotton effect, and the only 
question is whether it is to be assigned to the low- or 
high-energy band. If the arrangement of dipoles is 

(8) Bouman and Mosoowitz, J. Chem. Phys., in press. 

a. 

/------- --. 
Figure 3. The dipole-coupling mechanism. The optical factors 
are positive (right handed) in both cases. The interaction 
energy is positive on the left, negative on the right, indicating 
negative and positive Cotton effects, respectively, for the long- 
wavelength band. 

such that the sign of the energy is obvious (as it is in 
the examples in Figure 3), the positive Cotton effect 
will be assigned to the high-energy band for positive 
V and to the low-energy band for negative V .  I t  is 
easy to show that, if the transition moment arrows 
have the sense of a right-handed screw or if they ap- 
pear to wind around one another in a right-handed 
sense, the optical factor is positive. It is negative for 
a left-handed sense. Precisely the same considera- 
tions apply to the case of degenerate bands (e1 = Q), 
but the high- and low-energy bands are now the two 
bands which result from the exciton splitting. 

Further insight may be gained by writing out the 
complete expression for the rotatory strength of the 
long-wavelength Cotton effect. To simplify the for- 
mula, the Z axis is made to coincide with and the Y 
axis perpendicular to ~ 2 .  The vectors may then be 
written v1 = (o,O,p~z) ; v2 = ( P I X , O , P ~ Z )  ; RZI = (X,Y,Z)  
and the rotatory strength is given by eq 7. If pz is 

3 (X YZ)  (IJ2x) 1 (7) 
perpendicular to p1 (pZz = 0), the first term in the 
brackets vanishes, and the result is an octant ( X Y Z )  
rule. If the dipoles are essentially parallel (pzx much 
smaller than pZz),  the first term in the brackets domi- 
nates. The nodal surfaces of this term are given by 
Y = 0 and the two conical surfaces of X 2  + Y 2  - 
222 = 0. 

Electric-Magnetic Coupling. Magnetic dipoles do 
not couple directly with electric dipoles. However, all 
magnetic transitions which are associated with the 
orbital motions of electrons produce electric moments as 
well. If the chromophore has a center or a plane of 
symmetry, the electric moments can be dipole moments 
perpendicular t o  the magnetic moment, quadrupole 
moments, etc. In  particular, if the transition is of the 
n-r* type involving a p-p quantum jump in the atomic 
orbitals, the transition invariably is associated with a 
large quadrupole moment (Figure 4). This quadrupole 
moment interacts only very feebly with the radiation 
field, which is essentially uniform over the group, but 
can interact strongly with the inhomogeneous field of 
a neighboring dipole. We shall deal with the symmetry 
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rules associated with the special case of Figure 4a, which 
so far has provided the most important applications 
(carbonyl group, carboxylic acids, peptides). Exten- 
sion of the method to other chromophores is straight- 
forward if the symmetry of the excited-state wave 
function is known. 

A simple qualitative symmetry rule for this mech- 
anism can often be obtained as follows. Locate the 
magnetic moment along the positive 2 axis and place 
the quadrupole charges as indicated in Figure 4a. This 
figure is appropriate for the convention that the n 
orbitals are py and the n orbitals are pz. If the chromo- 
phore is a carbonyl group, this is the standard octant 
framework. I n  many cases the symmetry rule may be 
established as follows. Draw in the transition moment 
of the second group in such a way that 1 . m  is positive. 
The optical factor thus represents a positive Cotton 
effect. If the energy of the coupled system is nega- 
tive, the positive Cotton effect belongs with the long- 
wavelength band; if the energy is positive, it belongs 
to the short-wavelength band. Normally, the long- 
wavelength band is the n-n* transition, but this is not 
necessary for the application of the rule. 

The symmetry requirements on V can be formulated 
more quantitatively as follows. The potential energy 
of two arbitrary charge distributions can be developed 
in a series 

where qi is the ith moment of charge in group 1 (ao = 
total charge, q1 is a vector representing the three com- 
ponents of dipole moment, q 2  is a tensor representing 
five components of quadrupole moment, etc.) and 
R = (& - R1) is the distance between two conveniently 
chosen origins in the groups. The moments are defined 
relative to the two origins. The F,, are functions 
characteristic of each type of in te rac t i~n .~  Equation 6 
is the appropriate function for i = j = 1. For the 
interaction of a quadrupole on group 1 with a dipole on 
group 2, we require the term for i = 2, j = 1, which is 

Q1 is the quadrupole tensor or diadic of group 1 and is 
most easily represented by the matrix shown in (10). 

~ Q X Y  3Qxz 1 
Q = I  ~ Q Y Y  - Qxx - Qzz ~ Q Y Z  I (10) 

L 3Qxz 

a V 

d 
Figure 4. (a) The quadrupole and magnetic moment associated 
with an n--R* transition. The magnetic moment is a pure imag- 
inary, indicating i t  is out of phase with the quadrupole which is 
depicted. (b) The electric and magnetic dipoles involved in the 
p-m mechanism for diketopiperazines (see text). The coupling 
takes place by way of the interaction of f i ~  with the quadrupole 
associated with mt. 

~ Q Y Z  2Qzz - Qxx - QYYJ 

A formula equivalent to the above has recently been 
given by Hohn and WeigangVs The components of 
quadrupole moment are calculated by means of 

&a@ = -eJ’+ex&Pr (a, P X ,  Y ,  2) 

where e is the protonic charge. For the X Y  quadrupole 
of Figure 4, the matrix takes the form 

so that 

(9) The multipolar expansion of two arbitrary charge distributions 
is difficult to find in the literature in the form most useful to  the pres- 
ent application. We give the first eight terms of eq 8. 

- (charge-dipole) + R8 V = (charge-charge) + etez 

py$ - 3 (pl*RAF*R)] (dipole-dipole) + -1 2 R6 [ (elR.Q2.R) + 
[ R . Q ~ . ~ ~  - R . Q ~ . ~ ~  - 

R6 (e2R. Q1 * R)] (charge-quadrupole) + 

(dipole-quadrupole) $ higher terms 

Q and R are as defined in text. 
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-50,000- 

-60,000- 

and 

- -15 

I I I I I I I I  

v = 3*y [R2(Xpzy + Yp2x) - 
R7 

\ - - I  

- -  - 3Qxy [(RZ - 5 x 9  Ypzx + 
R7 

(R2  - 5Y2)xpzy  - 5 ( X Y z ) p z z ]  

There is no single symmetry rule in general. If the 
transition moment of group 2 happens to coincide with 
one of the coordinate axes, one of the three terms can 
be used to define the regional rule for this component. 
Notice that the 2 component follows an octant rule. 

The complete formula for the rotatory strength of 
the n--n* transition may be written as eq 12. It should 

3Qxy [ ( R 2  - 5X2)YpZx + 1 

(R2  - 5Y2)X/lzy - 5 ( X Y z ) ~ z z ] ~ ~ z m l z  

R 1 -  
€2 - € 1  R7 

(12) 

be noted that the convention for the coordinate system 
is contained in this formula. 

Application of the Rules 
Since all the results given above depend on a highly 

oversimplified model for an optically active molecule, 
the question arises as to their applicability to real mo- 
lecular problems. The fact is that the mechanisms 
which have been discussed supply all the ingredients 
for sophisticated calculations, which consist in the com- 
pounding of all three mechanisms for as many groups 
and excited states as are necessary or feasible. In- 
deed, if nondegenerate first-order perturbation theory 
is applicable, one may use the formulas given above 
for each pair of transitions, and the results of the full 
calculation are obtained by simply summing the con- 
tributions. If it can be decided that a given interaction 
dominates the development of a Cotton effect, then a 
simple symmetry rule is applicable. 

If the Cotton effect arises from a band with a large 
electric dipole and no magnetic dipole and if there are 
no magnetic transitions in the near-ultraviolet, the 
situation is considerably simplified, since it is a fairly 
safe assumption that the rotatory strength is developed 
largely from the dipole-dipole coupling mechanism. If, 
further, there is another strong band in the molecule of 
not-too-different energy, it is often a good approxi- 
mation to assume that the rotatory strength is dom- 
inated by its interaction with this band. This is 
especially appropriate if the two bands are degenerate 
or nearly degenerate. In  this case a rotatory strength 
‘‘couplet’’ is developed (Figure 5) which is easily de- 
tected experimentally and whose sign can be deter- 
mined from the symmetry rule for dipole-dipole cou- 
pling. Our group has undertaken a long series of in- 
vestigations of dipeptides, diamides, and diketopiper- 
azines in which such couplets are easily recognizable 
and have provided clear guidelines for conformational 
analysis. 
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Figure 5. A rotatory strength “couplet” is a characteristic form 
of dispersion which arises when two Cotton effects of equal but 
opposite rotatory strength lie less than a band width from one 
another. In  the figure, R1 = 1 DM,  41 = 15 mp, A1 = 250 mp; 
RS = - 1  DM, 4 2  = 15 mp, XZ = 245 mp. The contrast with 
Figure 1 makes the observation of a couplet an extremely ef- 
fective way of detecting small band splittings. 

Another case is when all the transitions of the second 
group are far down in the ultraviolet. The totality of 
bands can often be represented by an effective tran- 
sition moment with the direction of the principal 
polarizability of the group and an energy which is ob- 
tainable from the dispersion of the polarizability (or, 
preferably, the dispersion of the optical anisotropy). 
It was Kirkwood who first showed that the totality of 
transition moments of distant absorption bands enters 
into this mechanism as the anisotropy of the group 
polarizability . 

If the transition under consideration is weak and 
essentially magnetic, it is usually allowable to ignore 
the p-p coupling entirely. The Cotton effect is then 
usually treated by the one-electron mechanism and by 
regional rules such as the octant rule. If this procedure 
is permissible, the symmetry rules are both powerful 
and simple, since the form of the regional rules is de- 
termined entirely by the electronic properties of the 
chromophore. The remainder of the molecule supplies 
only a static asymmetric environment. A combination 
of simple symmetry arguments, plus a few experiments 
with molecules of known structure, is often sufficient to 
establish the division into regions and the signs to be 
attached to each region for a given type of perturbation. 
This lack of dependency on the details of quantum 
mechanical calculations provides an especially solid 
basis for conformational analysis. 

A difficulty with this approach is that it ignores the 
possibility of coupling of the magnetic dipole with 
strong transitions outside the group. It is not difficult 
to show, either by general considerations or by detailed 
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calculations, that the two mechanisms can produce 
equally large effects. Recent studies in our laboratory 
bring this out rather clearly. P. M. Bayley and V. 
Madison have investigated theoretically the rotatory 
strength of the n-a* Cotton effect of dipeptides as a 
function of the two conformational angles (p and +. In  
such a study it is possible to follow the relative contri- 
butions of the one-electron mechanism and the p-m 
mechanism as a function of conformation. I n  the a- 
helical conformation the two mechanisms enforce one 
another, as was also concluded by Woody and Tinoco.s 
I n  certain cases where the two peptide units are twisted 
back toward one another, the one-electron mechanism 
is by far the major contributor, but in other cases, such 
as diketopiperazines, where the peptide units are “back- 
to-back,’’ the entire rotatory strength is calculated to 
come from the p-m mechanism. 

The situation is represented in Figure 4b which de- 
picts the coupling of the magnetic moment of the n-a* 
transition of one peptide unit with the electric moment 
of the ~ a *  transition of the other. (In quantitative 
calculations, both units simultaneously play both roles.) 
As can be seen, the optical factor [v2.rn1] is sizable. 
Glycine diketopiperaxine is planar and is not optically 

active. This arises from the vanishing of V in eq 11. 
(Put both pzx and X equal to zero.) With substituted 
diketopiperazines the molecule is folded along the 
dotted line of the figure. The energy of interaction of 
a quadrupole and a dipole a t  the distances character- 
istic of these molecules is in the range of 100 cm-’, 
which is a small coupling energy. It achieves great 
importance, however, because of the smallness of - 
el in these compounds (see formula in Table I). The 
n-a* and a-a* transitions are almost degenerate. 
We conclude that this mechanism and the one-elec- 
tron mechanism are equally important for peptide 
Cotton effects and that their relative dominance is a 
matter of geometry, not of principle. Similar con- 
clusions have recently been expressed by Hohn and 
Weigang6 for the carbonyl n-?r* transition. 

In  conclusion, it may be stated that symmetry rules 
will continue to be used for the settlement of conforma- 
tion questions and for establishing the mechanism of 
production of Cotton effects. These rules can only be 
applied effectively by keeping in mind their implicit 
assumption of ’ an interaction mechanism. Conse- 
quently, a careful evaluation of mechanism must pre- 
cede the application of a symmetry rule. 


